About me

I am a Postdoc in the team Transparent Social Analytics in the department Computational Social Science at the GESIS Leibniz Institute for the Social Sciences.

Academic

Software

Publications

Submitted
  • Linde, M., Jochim, L., Tendeiro, J. N., & van Ravenzwaaij, D. (2023). Data-driven prior elicitation for Bayes factors in Cox regression for nine subfields in biomedicine Submitted for publication.
  • Linde, M., Tendeiro, J. N., & van Ravenzwaaij, D. (2023). Bayes factors for two-group comparisons in Cox regression. Submitted for publication.
  • Pittelkow, M.-M., Linde, M., de Vries, Y. A., Hemkens, L. G., Schmitt, A. M., Meijer, R. R., & van Ravenzwaaij, D. (2023). Strength of statistical evidence for the efficacy of cancer drugs: A Bayesian re-analysis of trials supporting FDA approval. Submitted for publication.
In press
  • Linde, M., Pittelkow, M.-M., Schwarzbach, N. R., & van Ravenzwaaij, D. (in press). Reputation without practice? A dynamic computational model of the unintended consequences of open scientist reputations. Journal of Trial and Error
  • Neumann, M., Niessen, A. S. M., Linde, M., Tendeiro, J. N., & Meijer, R. R. (in press). "Adding an egg" in algorithmic decision making: Improving stakeholder and user perceptions, and predictive validity by enhancing autonomy. European Journal of Work and Organizational Psychology
  • Linde, M., Tendeiro, J. N., Wagenmakers, E.-J., & van Ravenzwaaij, D. (in press). Practical implications of equating equivalence tests: Reply to Campbell and Gustafson (2022). Psychological Methods
2023
  • Linde, M., & van Ravenzwaaij, D. (2023). baymedr: An R package and web application for the calculation of Bayes factors for superiority, equivalence, and non-inferiority designs. BMC: Medical Research Methodology, 23, 279.
  • Heck, D. W., Boehm, U. Böing-Messing, F., Bürkner, P. C., Derks, K., Dienes, Z., Fu, Q., Gu, X., Karimova, D., Kiers, H. A. L., Klugkist, I., Kuiper, R. M., Lee, M. D., Leenders, R., Leplaa, H. J., Linde, M., Ly, A., Meijerink-Bosman, M., Moerbeek, M., Mulder, J., Palfi, B., Schönbrodt, F. D., Tendeiro, J. N., van den Bergh, D., van Lissa, C., van Ravenzwaaij, D., Vanpaemel, W., Wagenmakers, E.-J., Williams, D. R., Zondervan-Zwijnenburg, M., & Hoijtink, H. (2023). A review of applications of the Bayes factor in psychological research. Psychological Methods, 28(3), 558-579.
  • Linde, M., Tendeiro, J. N., Selker, R., Wagenmakers, E.-J., & van Ravenzwaaij, D. (2023). Decisions about equivalence: A comparison of TOST, HDI-ROPE, and the Bayes factor. Psychological Methods, 28(3), 740-755.
  • Linde, M., & van Ravenzwaaij, D. (2023). Bayes factor model comparisons across parameter values for mixed models. Computational Brain & Behavior, 6, 14-27.
  • van Doorn, J., Haaf, J. M., Stefan, A. M., Wagenmakers, E.-J., Cox, G. E., Davis-Stober, C. P., Heathcote, A., Heck, D. W., Kalish, M., Kellen, D., Matzke, D., Morey, R. D., Nicenboim, B., van Ravenzwaaij, D., Rouder, J. N., Schad, D. J., Shiffrin, R. M., Singmann, H., Vasishth, S., Veríssimo, J., Bockting, F., Chandramouli, S., Dunn, J. C., Gronau, Q. F., Linde, M., McMullin, S. D., Navarro, D., Schnuerch, M., Yadav, H., & Aust, F. (2023). Bayes factors for mixed models: A discussion. Computational Brain & Behavior, 6, 140-158.
2021
  • Field, S. M.*, Hoek, J.*, de Vries, Y. A., Linde, M., Pittelkow, M.-M., Muradchanian, J., & van Ravenzwaaij, D. (2021). Rethinking Remdesivir for COVID-19: A Bayesian reanalysis of trial findings. PLOS ONE, 16(7), e0255093.

Projects

baymedr
baymedr

R package for the calcultion of Bayes factors for common biomedical designs.

baymedr Shiny App
baymedr Shiny App

Corresponding Shiny web application for the baymedr R package.

My Portfolio
My Portfolio

Code for my portfolio, which partly serves for me to learn the basics of front-end web development.

Contact

Cologne